央视网|中国网络电视台|网站地图
客服设为首页
登录


首播

重播

   Parts:R1___________470K1/4W Resistor
R2_____________3K3 1/4W Resistor
R3___________100K 1/2W Trimmer Cermet 
C1_____________1nF 63V Polyester Capacitor
C2____________47μF 25V Electrolytic Capacitor 
D1__________1N4148 75V 150mA Diode
D2_____________5mm. Red LED 
IC1___________4093 Quad 2 input Schmitt NAND Gate IC 
P1,P2_______Probes (See text) 
SW1___________SPST Slider Switch 
B1______________3V Battery (2 AA 1.5V Cells in series) 

  Device purpose:

  This circuit is intended to signal when a plant is needing water. A LED illuminates at maximum brightness when the ground in the flower-pot is too dry: it dims gradually as the water‘s content in the pot grows, turning off when the optimum moisture‘s level is reached. This condition is obtained trimming R3.

  Circuit operation:

  IC1D forms a square wave oscillator with approx. 10/90 mark-space ratio. It feeds the output probe P1 and its signal, inverted by IC1A is compared with that picked-up by P2 in the NAND gates IC1B & IC1C in parallel, driving the LED. When a low resistance exists between the probes, due to an high water‘s content in the flower-pot, the LED is off, turning gradually on as the resistance between the probes increases.

  Notes:

A square wave is used to avoid probes‘ oxidization. Probes can be long nails, carbon rods obtained from disassembled exhausted 1.5V batteries, or even a couple of screwdrivers. The probes must be driven in the pot‘s ground a few inches apart. Due to 3V supply, the LED needs not a limiting resistor. Power consumption: LED off = 50μA; LED full on = 1mA. To switch-off the circuit, you can short the probes. In this case SW1 can be omitted. Using an high-efficiency LED, brightness variations are better emphasized. In this case a limiting resistor could be necessary.

视频集>>

热词:

channelId 1 1 植物缺水告警器 1